cochain complex
Look at other dictionaries:
cochain — noun A cochain complex … Wiktionary
Chain complex — Bicomplex redirects here. For the number, see Bicomplex number In mathematics, chain complex and cochain complex are constructs originally used in the field of algebraic topology. They are algebraic means of representing the relationships between … Wikipedia
Čech cohomology — In mathematics, specifically algebraic topology, Čech cohomology is a cohomology theory based on the intersection properties of open covers of a topological space. It is named for the mathematician Eduard Čech. Contents 1 Motivation 2… … Wikipedia
Group cohomology — This article is about homology and cohomology of a group. For homology or cohomology groups of a space or other object, see Homology (mathematics). In abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well… … Wikipedia
Spectral sequence — In the area of mathematics known as homological algebra, especially in algebraic topology and group cohomology, a spectral sequence is a means of computing homology groups by taking successive approximations. Spectral sequences are a… … Wikipedia
Cohomology — In mathematics, specifically in algebraic topology, cohomology is a general term for a sequence of abelian groups defined from a co chain complex. That is, cohomology is defined as the abstract study of cochains, cocycles, and coboundaries.… … Wikipedia
Differential graded algebra — In mathematics, in particular abstract algebra and topology, a differential graded algebra is a graded algebra with an added chain complex structure that respects the algebra structure. Contents 1 Definition 2 Examples of DGAs 3 Other facts about … Wikipedia
Stokes' theorem — For the equation governing viscous drag in fluids, see Stokes law. Topics in Calculus Fundamental theorem Limits of functions Continuity Mean value theorem Differential calculus Derivative Change of variables Implicit differentiatio … Wikipedia
Homology (mathematics) — In mathematics (especially algebraic topology and abstract algebra), homology (in Greek ὁμός homos identical ) is a certain general procedure to associate a sequence of abelian groups or modules with a given mathematical object such as a… … Wikipedia
Singular homology — In algebraic topology, a branch of mathematics, singular homology refers to the study of a certain set of topological invariants of a topological space X , the so called homology groups H n(X). Singular homology is a particular example of a… … Wikipedia