subscheme
Look at other dictionaries:
subscheme — n. * * * … Universalium
subscheme — n … Useful english dictionary
Glossary of scheme theory — This is a glossary of scheme theory. For an introduction to the theory of schemes in algebraic geometry, see affine scheme, projective space, sheaf and scheme. The concern here is to list the fundamental technical definitions and properties of… … Wikipedia
Ideal sheaf — In algebraic geometry and other areas of mathematics, an ideal sheaf (or sheaf of ideals) is the global analogue of an ideal in a ring. The ideal sheaves on a geometric object are closely connected to its subspaces. Definition Let X be a… … Wikipedia
Moduli space — In algebraic geometry, a moduli space is a geometric space (usually a scheme or an algebraic stack) whose points represent algebro geometric objects of some fixed kind, or isomorphism classes of such objects. Such spaces frequently arise as… … Wikipedia
Blowing up — This article is about the mathematical concept of blowing up. For information about the physical/chemical process, see Explosion. For other uses of Blow up , see Blow up (disambiguation). Blowup of the affine plane. In mathematics, blowing up or… … Wikipedia
Algebraic space — In mathematics, an algebraic space is a generalization of the schemes of algebraic geometry introduced by Michael Artin for use in deformation theory.DefinitionAn algebraic space X comprises a schemeOne can always assume that U is an affine… … Wikipedia
Hilbert scheme — In algebraic geometry, a branch of mathematics, a Hilbert scheme is a scheme that is the parameter space for the closed subschemes of some projective space (or a more general scheme), refining the Chow variety. The Hilbert scheme is a disjoint… … Wikipedia
Finite morphism — In algebraic geometry, a branch of mathematics, a morphism of schemes is a finite morphism, if Y has an open cover by affine schemes Vi = SpecBi such that for each i, f − 1(Vi) = Ui is an open affine subscheme SpecAi, and the restriction of … Wikipedia
Flat topology — In mathematics, the flat topology is a Grothendieck topology used in algebraic geometry. It is used to define the theory of flat cohomology; it also has played a fundamental role in the theory of descent (faithfully flat descent). [… … Wikipedia