ring theoretic
Look at other dictionaries:
Ring (mathematics) — This article is about algebraic structures. For geometric rings, see Annulus (mathematics). For the set theory concept, see Ring of sets. Polynomials, represented here by curves, form a ring under addition and multiplication. In mathematics, a… … Wikipedia
ring theoretical — adjective Having to do with ring theory. Syn: ring theoretic … Wiktionary
Algebra (ring theory) — In mathematics, specifically in ring theory, an algebra over a commutative ring is a generalization of the concept of an algebra over a field, where the base field K is replaced by a commutative ring R .Any ring can be thought of as an algebra… … Wikipedia
Noetherian ring — In mathematics, more specifically in the area of modern algebra known as ring theory, a Noetherian ring, named after Emmy Noether, is a ring in which every non empty set of ideals has a maximal element. Equivalently, a ring is Noetherian if it… … Wikipedia
Primitive ring — In mathematics, especially in the area of abstract algebra known as ring theory, the concept of left primitive ring generalizes that of matrix algebra. Every matrix ring is the endomorphism ring of a finite dimensional vector space, but a… … Wikipedia
Chow ring — In algebraic geometry, the Chow ring (named after W. L. Chow) of an algebraic variety is an algebraic geometric analogue of the cohomology ring of the variety considered as a topological space: its elements are formed out of actual subvarieties… … Wikipedia
Category of rings — In mathematics, the category of rings, denoted by Ring, is the category whose objects are rings (with identity) and whose morphisms are ring homomorphisms (preserving the identity). Like many categories in mathematics, the category of rings is… … Wikipedia
Emmy Noether — Amalie Emmy Noether Born 23 March 1882(1882 03 23) … Wikipedia
Module (mathematics) — For other uses, see Module (disambiguation). In abstract algebra, the concept of a module over a ring is a generalization of the notion of vector space, wherein the corresponding scalars are allowed to lie in an arbitrary ring. Modules also… … Wikipedia
Morita equivalence — In abstract algebra, Morita equivalence is a relationship defined between rings that preserves many ring theoretic properties. It is named after Japanese mathematician Kiiti Morita who defined equivalence and a similar notion of duality in 1958.… … Wikipedia