geodesically

geodesically
a) In a geodesic manner
b) With regard to geodesy

Wikipedia foundation.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Geodesic convexity — In mathematics mdash; specifically, in Riemannian geometry mdash; geodesic convexity is a natural generalization of convexity for sets and functions to Riemannian manifolds. It is common to drop the prefix geodesic and refer simply to convexity… …   Wikipedia

  • Geodesic manifold — In mathematics, a geodesic manifold (or geodesically complete manifold) is a surface on which any two points can be joined by a shortest path, called a geodesic.DefinitionLet (M, g) be a (connected) (pseudo ) Riemannian manifold, and let gamma :… …   Wikipedia

  • CAT(k) space — In mathematics, a CAT( k ) space is a specific type of metric space. Intuitively, triangles in a CAT( k ) space are slimmer than corresponding model triangles in a standard space of constant curvature k . In a CAT( k ) space, the curvature is… …   Wikipedia

  • Rindler coordinates — In relativistic physics, the Rindler coordinate chart is an important and useful coordinate chart representing part of flat spacetime, also called the Minkowski vacuum. The Rindler chart was introduced by Wolfgang Rindler. The Rindler coordinate… …   Wikipedia

  • Shape of the Universe — Edge of the Universe redirects here. For the Bee Gees song, see Edge of the Universe (song). The local geometry of the universe is determined by whether Omega is less than, equal to or greater than 1. From top to bottom: a spherical universe, a… …   Wikipedia

  • Riemannian manifold — In Riemannian geometry, a Riemannian manifold ( M , g ) (with Riemannian metric g ) is a real differentiable manifold M in which each tangent space is equipped with an inner product g in a manner which varies smoothly from point to point. The… …   Wikipedia

  • Exponential map — In differential geometry, the exponential map is a generalization of the ordinary exponential function of mathematical analysis to all differentiable manifolds with an affine connection. Two important special cases of this are the exponential map …   Wikipedia

  • Holonomy — Parallel transport on a sphere depends on the path. Transporting from A → N → B → A yields a vector different from the initial vector. This failure to return to the initial vector is measured by the holonomy of the connection. In differential… …   Wikipedia

  • Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… …   Wikipedia

  • Convex set — A convex set …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”