- cofinite
-
Having a finite absolute complement.See Also: cofinitely, cofiniteness
Wikipedia foundation.
Wikipedia foundation.
Cofinite — In mathematics, a cofinite subset of a set X is a subset Y whose complement in X is a finite set. In other words, Y contains all but finitely many elements of X . If the complement is not finite, but it is countable, then one says the set is… … Wikipedia
Cofiniteness — Not to be confused with cofinality. In mathematics, a cofinite subset of a set X is a subset A whose complement in X is a finite set. In other words, A contains all but finitely many elements of X. If the complement is not finite, but it is… … Wikipedia
T1 space — In topology and related branches of mathematics, T1 spaces and R0 spaces are particular kinds of topological spaces.The T1 and R0 properties are examples of separation axioms. Definitions Let X be a topological space and let x and y be points in… … Wikipedia
Boolean algebra — This article discusses the subject referred to as Boolean algebra. For the mathematical objects, see Boolean algebra (structure). Boolean algebra, as developed in 1854 by George Boole in his book An Investigation of the Laws of Thought,[1] is a… … Wikipedia
Boolean algebra (introduction) — Boolean algebra, developed in 1854 by George Boole in his book An Investigation of the Laws of Thought , is a variant of ordinary algebra as taught in high school. Boolean algebra differs from ordinary algebra in three ways: in the values that… … Wikipedia
Boolean algebras canonically defined — Boolean algebras have been formally defined variously as a kind of lattice and as a kind of ring. This article presents them more neutrally but equally formally as simply the models of the equational theory of two values, and observes the… … Wikipedia
Tychonoff's theorem — For other theorems named after Tychonoff, see Tychonoff s theorem (disambiguation). In mathematics, Tychonoff s theorem states that the product of any collection of compact topological spaces is compact. The theorem is named after Andrey… … Wikipedia
Ultraproduct — An ultraproduct is a mathematical construction, of which the ultrapower (defined below) is a special case. Ultraproducts are used in abstract algebra to construct new fields from given ones, and in model theory, a branch of mathematical logic. In … Wikipedia
List of examples in general topology — This is a list of useful examples in general topology, a field of mathematics.* Alexandrov topology * Cantor space * Co kappa topology ** Cocountable topology ** Cofinite topology * Compact open topology * Compactification * Discrete topology *… … Wikipedia
Strongly minimal theory — In model theory a branch of mathematical logic a minimal structure is an infinite one sorted structure such that every subset of its domain that is definable with parameters is either finite or cofinite. A strongly minimal theory is a complete… … Wikipedia