- great icosihemidodecahedron
-
a polyhedron having 26 faces, 30 vertices, 60 edges, 6 self intersected faces and 6 nonconvex faces
Wikipedia foundation.
Wikipedia foundation.
Great icosihemidodecahedron — In geometry, the great icosihemidodecahedron is a nonconvex uniform polyhedron, indexed as U71.It shares the same edge arrangement, along with its 20 triangular faces, with the great icosidodecahedron. See also * List of uniform polyhedra… … Wikipedia
icosihemidodecahedron — noun either of two polyhedra, the small icosihemidodecahedron and the great icosihemidodecahedron … Wiktionary
Truncated great dodecahedron — Type Uniform star polyhedron Elements F = 24, E = 90 V = 60 (χ = −6) Faces by sides 12{5/2}+12{10} Wythof … Wikipedia
Truncated great icosahedron — Type Uniform star polyhedron Elements F = 32, E = 90 V = 60 (χ = 2) Faces by sides 12{5/2}+20{6} Wythoff symb … Wikipedia
Nonconvex great rhombicosidodecahedron — Type Uniform star polyhedron Elements F = 62, E = 120 V = 60 (χ = 2) Faces by sides 20{3}+30{4}+12{5/2} … Wikipedia
Liste Des Polyèdres Uniformes — Les polyèdres uniformes et les pavages forment un groupe bien étudié. Ils sont listés ici pour une comparaison rapide de leurs propriétés et de leurs noms de schéma variés ainsi que de leurs symboles. Cette liste inclut : tous les 75… … Wikipédia en Français
Liste des polyedres uniformes — Liste des polyèdres uniformes Les polyèdres uniformes et les pavages forment un groupe bien étudié. Ils sont listés ici pour une comparaison rapide de leurs propriétés et de leurs noms de schéma variés ainsi que de leurs symboles. Cette liste… … Wikipédia en Français
Liste des polyèdres uniformes — Cette liste recense les polyèdres uniformes, ainsi que certaines de leurs propriétés. Sommaire 1 Méthodologie 2 Table des polyèdres 2.1 Formes convexes (3 faces/sommet) … Wikipédia en Français
Hemipolyhedron — In geometry, a hemipolyhedron is a uniform star polyhedron some of whose faces pass through its center. These hemi faces lie parallel to the faces of some other symmetrical polyhedron, and their count is half the number of faces of that other… … Wikipedia
Kepler–Poinsot polyhedron — In geometry, a Kepler–Poinsot polyhedron is any of four regular star polyhedra. They may be obtained by stellating the regular convex dodecahedron and icosahedron, and differ from these in having regular pentagrammic faces or vertex figures.… … Wikipedia