**meromorphic** — [mer΄ō môr′fik] adj. [< Gr meros, part (see MERIT) + MORPHIC] Math. designating or of a function of a complex variable that is regular in a given domain except for a finite number of poles … English World dictionary

**Meromorphic function** — In complex analysis, a meromorphic function on an open subset D of the complex plane is a function that is holomorphic on all D except a set of isolated points, which are poles for the function. (The terminology comes from the Ancient Greek meros … Wikipedia

**meromorphic function** — |merə|mȯrfik , |mȯ(ə)f noun Etymology: meromorphic from mer (III) + morphic : a function of a complex variable that is regular in a region except for a finite number of points at which it has infinity for limit … Useful english dictionary

**meromorphic** — adjective Date: circa 1890 relating to or being a function of a complex variable that is analytic everywhere in a region except for singularities at each of which infinity is the limit and each of which is contained in a neighborhood where the… … New Collegiate Dictionary

**meromorphic** — /mer euh mawr fik/, adj. Math. of or pertaining to a function that is analytic, except for poles, in a given domain. [‡1885 90; MERO + MORPHIC] * * * … Universalium

**meromorphic** — mero·mor·phic … English syllables

**meromorphic** — /mer euh mawr fik/, adj. Math. of or pertaining to a function that is analytic, except for poles, in a given domain. [‡1885 90; MERO + MORPHIC] … Useful english dictionary

**Riemann–Roch theorem** — In mathematics, specifically in complex analysis and algebraic geometry, the Riemann–Roch theorem is an important tool in the computation of the dimension of the space of meromorphic functions with prescribed zeroes and allowed poles. It relates… … Wikipedia

**Mock modular form** — In mathematics, a mock modular form is the holomorphic part of a harmonic weak Maass form, and a mock theta function is essentially a mock modular form of weight 1/2. The first examples of mock theta functions were described by Srinivasa… … Wikipedia

**Riemann surface** — For the Riemann surface of a subring of a field, see Zariski–Riemann space. Riemann surface for the function ƒ(z) = √z. The two horizontal axes represent the real and imaginary parts of z, while the vertical axis represents the real… … Wikipedia