collineation
Look at other dictionaries:
Collineation — Col*lin e*a tion, n. [L. collineare to direct in a straight line. See {Collimation}.] The act of aiming at, or directing in a line with, a fixed object. [R.] Johnson. [1913 Webster] … The Collaborative International Dictionary of English
Collineation — Collineation, eine Art der geometrischen Verwandschaft, s.d … Pierer's Universal-Lexikon
Collineation — In projective geometry, a collineation is a one to one and onto map (a bijection) from one projective space to another, or from a projective space to itself, such that the images of collinear points are themselves collinear. All projective linear … Wikipedia
collineation — ̷ ̷ˌ ̷ ̷ ̷ ̷ˈāshən noun ( s) Etymology: New Latin collineation , collineatio, from Latin collineatus (past participle of collineare to direct in a straight line, from com + lineare to make straight, from linea line) + ion , io ion more at line … Useful english dictionary
collinéation — (kol li né a sion) s. f. Véritable terme remplacé à tort par collimation (voy. collimation) … Dictionnaire de la Langue Française d'Émile Littré
collineation — col·lin·ea·tion … English syllables
Curvature collineation — A curvature collineation (often abbreviated to CC) is vector field which preserves the Riemann tensor in the sense that, where Rabcd are the components of the Riemann tensor. The set of all smooth curvature collineations forms a Lie algebra under … Wikipedia
Matter collineation — A matter collineation (sometimes matter symmetry and abbreviated to MC) is a vector field that satisfies the condition, where Tab are the energy momentum tensor components. The intimate relation between geometry and physics may be highlighted… … Wikipedia
Théorème fondamental de la géométrie projective — Deux théorèmes de la géométrie projective s appellent théorème fondamental de la géométrie projective : le premier théorème fondamental de la géométrie projective affirme que, quels que soient les repères projectifs d un espace projectif de… … Wikipédia en Français
Oval (projective plane) — In mathematics, an oval in a projective plane is a set of points, no three collinear, such that there is a unique tangent line at each point (a tangent line is defined as a line meeting the point set at only one point, also known as a 1 secant).… … Wikipedia