weakly cardinal

weakly cardinal
Characteristic of weak cardinality

Wikipedia foundation.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Weakly compact cardinal — In mathematics, a weakly compact cardinal is a certain kind of cardinal number introduced by harvtxt|Erdös|Tarski|1961; weakly compact cardinals are large cardinals, meaning that their existence can neither be proven nor disproven from the… …   Wikipedia

  • Weakly hyper-Woodin cardinal — In axiomatic set theory, weakly hyper Woodin cardinals are a kind of large cardinals. A cardinal κ is called weakly hyper Woodin if and only if for every set S there exists a normal measure U on κ such that the set {λ < κ | λ is …   Wikipedia

  • Cardinal mesurable — En mathématiques, un cardinal mesurable est un cardinal sur lequel existe une mesure définie pour tout sous ensemble ; cette propriété fait qu un tel cardinal est un grand cardinal. Sommaire 1 Définitions et propriétés de grand cardinal 2… …   Wikipédia en Français

  • Weakly compact — In mathematics, weakly compact can refer to*weakly compact cardinal *compact in the weak topology …   Wikipedia

  • Inaccessible cardinal — In set theory, an uncountable regular cardinal number is called weakly inaccessible if it is a weak limit cardinal, and strongly inaccessible, or just inaccessible, if it is a strong limit cardinal. Some authors do not require weakly and strongly …   Wikipedia

  • Mahlo cardinal — In mathematics, a Mahlo cardinal is a certain kind of large cardinal number. Mahlo cardinals were first described by Paul Mahlo (1911, 1912, 1913). As with all large cardinals, none of these varieties of Mahlo cardinals can be proved to… …   Wikipedia

  • List of large cardinal properties — This page is a list of some types of cardinals; it is arranged roughly in order of the consistency strength of the axiom asserting the existence of cardinals with the given property. Existence of a cardinal number κ of a given type implies the… …   Wikipedia

  • Limit cardinal — In mathematics, limit cardinals are a type of cardinal number.With the cardinal successor operation defined, we can define a limit cardinal in analogy to that for limit ordinals: λ is a (weak) limit cardinal if and only if λ is neither a… …   Wikipedia

  • Measurable cardinal — In mathematics, a measurable cardinal is a certain kind of large cardinal number. Contents 1 Measurable 2 Real valued measurable 3 See also 4 References …   Wikipedia

  • Regular cardinal — In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. So, crudely speaking, a regular cardinal is one which cannot be broken into a smaller collection of smaller parts.(The situation is slightly more… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”