- orbifold
-
A topological space in which every small enough neighborhood is homeomorphic to a quotient of real space by the action of a finite group.
Wikipedia foundation.
Wikipedia foundation.
Orbifold — This terminology should not be blamed on me. It was obtained by a democratic process in my course of 1976 77. An orbifold is something with many folds; unfortunately, the word “manifold” already has a different definition. I tried “foldamani”,… … Wikipedia
Orbifold — En mathématiques, un orbifold est une généralisation de la notion de variété[1] contenant de possibles singularités. Ces espaces ont été introduits explicitement pour la première fois par Ichirō Satake (de) en 1956 sous le nom de V manifolds … Wikipédia en Français
Orbifold — En topología, orbifold (Orbidad u orbivariedad) es generalización de variedad diferenciable, consistente en un espacio topológico (llamado espacio subyacente) con una estructura de orbifold (véase abajo). El espacio subyacente localmente parece… … Wikipedia Español
Orbifold — En topología, orbifold (o V variedad; expresión que, lamentablemente, nadie usa; pensando, tal vez, que implica variedad y no una generalización. La V es para sugerir una singularidad en cono.) es generalización de variedad. Es un espacio… … Enciclopedia Universal
Orbifold notation — In geometry, orbifold notation (or orbifold signature) is a system, invented by William Thurston and popularized by the mathematician John Conway, for representing types of symmetry groups in two dimensional spaces of constant curvature. The… … Wikipedia
Opération d'orbifold — Orbifold En mathématiques, un orbifold est une généralisation de la notion de variété[1] contenant de possibles singularités. Ces espaces ont été introduits explicitement pour la première fois par Satake en 1956 sous le nom de V manifolds. Pour… … Wikipédia en Français
Transition d'obrifold — Orbifold En mathématiques, un orbifold est une généralisation de la notion de variété[1] contenant de possibles singularités. Ces espaces ont été introduits explicitement pour la première fois par Satake en 1956 sous le nom de V manifolds. Pour… … Wikipédia en Français
Ebene kristallografische Gruppe — Die ebenen kristallografischen Gruppen sind die Symmetriegruppen von periodischen Mustern oder Parkettierungen der euklidischen Ebene. Im zweidimensionalen Raum gibt es siebzehn verschiedene kristallographische Raumgruppen. Im Sinne der… … Deutsch Wikipedia
Ebene kristallographische Gruppe — Die ebenen kristallographischen Gruppen sind die Symmetriegruppen von periodischen Mustern oder Parkettierungen der euklidischen Ebene. Es gibt genau 17 solche Gruppen. Ihnen entsprechen im dreidimensionalen Raum die 230 kristallographischen… … Deutsch Wikipedia
Ornamentgruppe — Die ebenen kristallografischen Gruppen sind die Symmetriegruppen von periodischen Mustern oder Parkettierungen der euklidischen Ebene. Im zweidimensionalen Raum gibt es siebzehn verschiedene kristallographische Raumgruppen. Im Sinne der… … Deutsch Wikipedia